Assessment Schedule - 2007

Calculus: Differentiate functions and use derivatives to solve problems (90635)

Evidence Statement

	Achievement Criteria	Q.	Evidence	Code	Judgement	Sufficiency
	Differentiate functions and use derivatives to solve problems.	1a	$\frac{dy}{dx} = \frac{1}{4} (2x - 7)^{\frac{-3}{4}} . 2$ $= \frac{1}{2} (2x - 7)^{\frac{-3}{4}}$	A1	Or equivalent	Achievement: FOUR of Code A
		1b	$\frac{\mathrm{d}y}{\mathrm{d}x} = 12\mathrm{e}^{4x} + \frac{5}{5x+6}$	A1	Or equivalent	including at least ONE of Code A1 and ONE of Code
		1c	$\frac{\mathrm{d}y}{\mathrm{d}x} = (x^2 - 1)\sec^2 x + \tan x.2x$	A1	Or equivalent	A2.
EMENT		2	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{5}{2}t^{\frac{-1}{2}} + \frac{15}{t+1}$	A1	Must show derivative	
ACHIEVEMENT			When $t = 15$, $\frac{dh}{dt} = \frac{5}{2\sqrt{15}} + \frac{15}{16}$ = 1.6 m s ⁻¹	or A2	Or equivalent Units not required.	
		3	$\frac{dy}{dx} = 3(x^2 - 3x)^2 (2x - 3)$	A1	Must show $\frac{dy}{dx}$	
			When $x = 2$, $\frac{dy}{dx} = 12$	or		
			Equation of tangent: y+8=12(x-2) y=12x-32 or $12x-y-32=0$	A2	Or equivalent	

	Achievement Criteria	Q.	Evidence	Code	Judgement	Sufficiency
	Demonstrate knowledge of advanced concepts and techniques of differentiation and solve differentiation problems.	4	$2x+3-8y\frac{dy}{dx} = 5\frac{dy}{dx}$ $2x+3 = (8y+5)\frac{dy}{dx}$ $\frac{dy}{dx} = \frac{2x+3}{8y+5}$	A1 M1	Or equivalent.	Merit: Achievement PLUS THREE of Code M including
ACHIEVEMENT WITH MERIT		5	f'(x) $-4 -2$ $2 4 6 8$	M1	Accept 4 of 5: • When x < 2, positive gradient horizontal line • When x = 2, not differentiable. Open circles. • When 2 < x < 4 negative gradient increasing. • When x = 4, zero gradient. • When x > 4, positive gradient increasing.	at least ONE of code M1 and ONE of code M2 OR FOUR of Code M
ACI		$\frac{dh}{d\theta} = 45$ $\frac{dh}{dt} = -3$ $\frac{d\theta}{dt} = \frac{d\theta}{dh}$ $= -\frac{c}{3}$ When θ $\frac{d\theta}{dt} = -\frac{1}{3}$		or A2 M2	Must show $\frac{d\theta}{dt}$ Accept $\frac{d\theta}{dt} = \pm 0.033$ Or equivalent. Units not required.	

	Achievement Criteria	Q.	Evidence	Code	Judgement	Sufficiency
ACHIEVEMENT WITH MERIT	Demonstrate knowledge of advanced concepts and techniques of differentiation and solve differentiation problems.	7	Perimeter of window: $2r + 2(y - r) + 2 \cdot \frac{1}{4}\pi 2r = 600$ $y = 300 - \frac{\pi}{2}r$ Area of window: $A = 2ry - \frac{1}{2}\pi r^2$ $= 600r - \frac{3\pi}{2}r^2$ $\frac{dA}{dr} = 600 - 3\pi r$ Maximum when $\frac{dA}{dr} = 0$ $r = \frac{600}{3\pi} = 63.66 \text{ cm}$ Max area = 19100 cm ²	A2 M2	Ignore a minor numerical error. Must show $\frac{dA}{dr}$ Or equivalent. Units not required.	Merit: Achievement PLUS THREE of Code M Including at least ONE of code M1 and ONE of code M2 OR FOUR of Code M

	Achievement Criteria	Q.	Evidence	Code	Judgement	Sufficiency
ACHIEVEMENT WITH EXCELLENCE	Solve more complex differentiation problem(s).	8	$\frac{dx}{dt} = 12t^{2} \qquad \frac{dy}{dt} = 6t - 7$ $\frac{dy}{dx} = \frac{6t - 7}{12t^{2}}$ $= \frac{1}{2t} - \frac{7}{12t^{2}}$ $\frac{d^{2}y}{dx^{2}} = (-\frac{1}{2t^{2}} + \frac{14}{12t^{3}}) \frac{1}{12t^{2}}$ $= \frac{7 - 3t}{72t^{5}}$ Concave up when $\frac{d^{2}y}{dx^{2}} > 0$ $\frac{7 - 3t}{72t^{5}} > 0$ $0 < t < 2\frac{1}{3}$	A1 M1 A2 M2 E	Must show $\frac{dy}{dx}$ Or equivalent Must show $\frac{d^2y}{dx^2}$ Or equivalent	Excellence: Merit plus Code E

Judgement Statement

Achievement	Achievement with Merit	Achievement with Excellence
Differentiate functions and use derivatives to solve problems.	Demonstrate knowledge of advanced concepts and techniques of differentiation and solve differentiation problems.	Solve more complex differentiation problem(s).
$4 \times A$ including at least $1 \times A1$ and at least $1 \times A2$	Achievement plus 3 × M including at least 1 × M1 and 1 × M2 or 4 × M	Merit plus 1 × E

The following Mathematics specific marking conventions may also have been used when marking this paper:

- Errors are circled.
- Omissions are indicated by a caret (A).
- NS may have been used when there was not sufficient evidence to award a grade.
- CON may have been used to indicate 'consistency' where an answer is obtained using a prior, but incorrect answer and NC if the answer is not consistent with wrong working.
- CAO is used when the 'correct answer only' is given and the assessment schedule indicates that more evidence was required.
- # may be used when a correct answer is obtained but then further (unnecessary) working results in an incorrect final answer being offered.
- RAWW indicates right answer, wrong working.
- **R** for 'rounding error' and **PR** for 'premature rounding' resulting in a significant round-off error in the answer (if the question required evidence for rounding).
- U for incorrect or omitted units (if the question required evidence for units).
- MEI may have been used to indicate where a minor error has been made and ignored.